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Abstract A non-linear diffusion model of Fujita ia adapted to obtain an analytic solution describing the 
temperature distribution and position of any number of phase boundaries as a material cools on an 
efkxxively semi-infinite base material. Each material ih initially homogeneous and at a uniform temperature. 
The solution method may Incorporate any materials with temperature-dependent thermal properties 
undergoing any number of phase changes. As an example. we incorporate transitions through five phases 

of iron with non-linear heat conduction, as the iron cools on a copper base. 

1. INTRODUCTION 

THERE is considerable interest in diffusion processes 
involving the movement of phase boundaries within 
materials. These processes occur in many areas of 
science and engineering such as the solidification of 
castings, melting or freezing of food products, thawing 
of permafrost, tarnishing of metal surfaces and the 
dissolution of bubbles or solid particles. Despite the 
multitude of investigations on such processes, rela- 
tively few explicit analytic models exist and many of 
their solutions assume that the heat or concentration 
diffusivity is constant within any phases present. 

Fujita [l] derived linearization procedures for a 
class of one-dimensional non-linear diffusion equa- 
tions with diffusivities of form : 

z(j-O)m2, (I) 

where r (>O), flare constants and 0 is concentration. 
This class of equations and related adaptations have 
received detailed analysis [l-6] and have been applied 
to many diffusion processes, some of which were pre- 
viously modelled using constant diffusivities [I 151. 
In particular, an adaptation of (1) was applied to a 
class of single phase and two-phase Stefan problems 
by Hill and Hart [9] and Rogers [lo, 111. This paper 
considers a further class of Stefan free boundary prob- 
lems. 

An adaptation of the diffusivity form (1) is applied 
to the problem of describing the temperature dis- 
tribution and position of any number of phase bound- 
aries as a semi-infinite material solidifies on a semi- 
infinite base material. Both materials may change 
phase an arbitrary number of times with the number 
of phase changes in the solidifying material not necess- 
arily being the same as the number in the base 
material. Each phase may have distinct thermal 
properties which may vary with temperature as in 

equation (1). Each phase change occurs isothermally 
and may be accompanied by the emission or absorp- 
tion of heat. Each material is initially homogeneous 
and at a uniform temperature. The density of each 
material is assumed to be constant. 

A closely related problem in linear heat conduction 
was considered by Weiner [ 161 in an investigation on 
the solidification of alloys and by Tien [17] in an 
investigation into the effect of latent heat release in 
the solid-state phase changes on the overall rate of the 
solidification of metals. 

In the solution method any material with tem- 
perature dependent thermal properties may be incor- 
porated. The thermal diffusivity function is replaced 
piecewise by segments of the form (1) by introducing, 
where appropriate, additional phase changes having 
zero latent heat of transformation. 

2. FORMULATION OF THE PROBLEM 

Following the notation of Weiner [ 161, a solidifying 
material, say material 1, occupying the region x 2 0 
abuts another material, say material 2, occupying the 
region x < 0. There is continuity of temperature and 
continuity of heat flux between the materials. Both 
materials are originally homogeneous and at uniform 
temperature, r,,, for material 1 and T ,) (< T,,,) for 
material 2. Each material may exist in a number of 
phases with each phase having distinct thermal 
properties which may vary with temperature. 

At the commencement of solidification, for a time 
interval 0 < t < tf. the temperature T, at x = 0 will be 
within the temperature range for one phase of material 
1 and for another phase of material 2. There are then 
say m phases in material 1 and n phases in material 2 
(it is shown later that the temperature T0 is constant). 
We denote the phase change temperatures as T,: 
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NOMENCLATURE 

u,, b, thermal diffusivity parameters 
defined by equation (17) 

Yo symbol for boundary at x = 0. 

c, (4 
D,(u,) 
9, 

K.(u 1 
4 

ni 

n 

t 

T,, 

T- ,, 

T, 

TIJ 

volumetric heat capacity for phase i 
thermal diffusivity for phase i 
thermal density function defined by 
equation (44) 
thermal conductivity for phase i 
volumetric latent heat of 
transformation from phase 
i+sgn(i) to i 
number of phases in the solidifying 
material 
number of phases in the base material 
time 
initial temperature of the solidifying 
material 
initial temperature of the base 
material 
phase transition temperature from 
phasei+l toi 
temperature at materials boundary 
x=0 

Greek symbols 

%? B, heat diffusivity parameters defined 
by equation (16) 

6, coefficient in the interface-position 
function defined by equation (31) 

Q, Kirchhoff thermal density defined by 
equation (21) 

0 concentration 
A, > 4 parameters defined by equations (35) 

and (36) respectively 

PJ Kirchhoff thermal density 
distribution defined by equation 

(14) 
5 time parameter defined by equation 

(26) 
42 similarity variable defined by 

equation (44) 

XZ Storm variable defined by equation 

(25). 

u,(x, t) temperature distribution for phase i 
l’, arbitrary constant 

length 
Subscript 

x * 

Y,(f) position of moving interface between 
non-dimensional quantities. 

phase i+ 1 and i 
I;. symbol for boundary at infinity Superscripts 

Y-IZ symbol for boundary at negative * non-dimensional quantities 
infinity scales for non-dimensionalization. 

i = 1,. .,m- 1 for material 1 and q; j = 
- 1,. ., -n+ 1 for material 2. Variables with a 
positive subscript will pertain to the solidifying 
material and a negative subscript will pertain to the 
base material. 

IY,-,,“,,,I < I.%1 < /L’!I> 

i= -n ,...) -l,l,..., m, (3) 

with continuity of temperature at each phase bound- 
ary, 

Hence, for 0 < t < tf and temperatures T, , 
< u, < T,; i= I,...,m [T,<u,< T,,,; j= 
- 1,. .,-n], material 1 [2] exists in m [n] phases 
with thermal conductivity K,(u,) : i = -n,. .,- 1. 
1.. . . m and volumetric heat capacity c(u); i = 
--n )..., -1,1,... ,m. 

At each interface .u=~,(t); i= -n+l.....-I. 
I.. , nz - 1 separating phase i from phase i+ sgn (i). 
there is the Stefan condition : 

i= -_n ).__) -I,_.., m, (4) 

and continuity of flux between the materials, 

The initial conditions are : 

wheresgn(z)=]z/z-‘=l when-_>Oor -1 when 
z<O,andL,:i= -n+l,..., -l,l,..., m-larethe 

Y,(O)=O, i= -n+l,..., -l,l,..., m-l. (7) 

volumetric latent heat of phase change from phase For conciseness, the symbols y,, J’,,, and ,Y-, are used 
i + sgn (i) to i. We choose L, to be positive in sign when for the boundaries at x = 0, x, and - co, respectively, 
latent heat is emitted. and the symbols ,f(y,J and f(y-,J represent 

The governing equations for the temperature in lim,,, f(x) and lim,, _ J(x), respectively. 
each phase are : We non-dimensionalize equations (2)-(7) as : 
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au: a au: 
c’~=z K:ax, rl~I*-spn(nI<Ix*l<l~*l, 

[ 1 

D, = ~,2(b~-p;)~, (17) 

where a, = cr; ‘I2 and b, = - ai/@- co;). 

i= -_n )...) -l,l,. .,m, (8) 
Equations (8) transform to : 

-= L:s atx, = y: lYL_Sg”(,)I < Ix*l < IJ$=l, 
* 

fori= -n+l,..., -l,l,.._, m-l, (9) 
i= -_n ,...) -l,l,..., tn. (18) 

0X&l(,,, I*) = Zren,0, u:(Y,*, t*) = 7-T. 
Choosing the lower limit of integration in the 
Kirchhoff integral variables as L’, = T,*,,.(,, for 

i= -_n (...) -l,l,..., m, (10) i= -n ,..., -2, 2,. ..,m and v_, = V, (with com- 

ae, 
KY;= Kflirx 

mon value u,, say), the equations (9))(12) trans- 
atx, = 0, (11) form to: 

I * 

and initial conditions : 

I/O m limu* = l,x,>O, h_mo,u*.=O,x, CO, (12) 

Y?(O) = 0, i= -n+l,..., -l,l,..., m-l, 

(13) 

where u: = (u,-T_,)/(T,-T_,); i= -n ,..., -1, 
1,. .,m are scaled temperatures, KF(u,?) = K,(q)/ 
&; i = -n,. . .,- 1, 1,. . .,m are scaled thermal con- 
ductivities, cT(uF) = c&,)/e, ; i = -n,. . ., - 1, 1,. . .,m 
are scaled volumetric heat capacities, x* = x[?,,/ 

&AN “2 is scaled length, t, = t/tS is scaled time, 
y*(t,) = ~~~(t)[&/(&t,)]‘~* ; i = -n+ 1,. . . ,- 1, 1, . . . , 
m- 1 are scaled positions of the interfaces between 
phases, Ly = i*&/(&(T,,, - T-J), i? = LJJ$ ; i = 
-n+l,...,- 1 ,l,. . ,m- 1 are scaled volumet- 
ric latent heats and TT = (T; - T_,)/(T,,, - T_,) ; i = 
-n, . , - 1, 1, , m are scaled temperatures at 
boundaries and interfaces. x0, &, z,, and t, are scales 
for the thermal conductivity, volumetric heat 
capacity, volumetric latent heat and time, respectively. 

Following the notation of Broadbridge, Tritscher 
and Avagliano [18], consider a transformation by 
Kirchhoff [19] : 

j= -n ,..., -l,l,..., m, (14) 

where 0, = j::c,*(tl)d~ is the heat density and 
D, = KF/c,* is the heat diffusivity. v, are arbitrary con- 
stants and wi = j:c:(ti) da. 

Assume that in each phase the diffusivity is of the 
form : 

D, = a,@-a,)-‘, x, > 0. (15) 

The one-dimensional diffusion equation with this class 
of diffusivity was solved by Fujita [l] subject to con- 
centration boundary conditions and by Knight [2, 31 
with arbitrary initial conditions and a flux boun- 
dary condition. The Kirchhoff transformation then 
yields : 

P, = a,/(h -@I - 4it.h -4, 

in terms of which the thermal diffusivity is : 

(16) 

i= -n+l,..., -l,l,..., m-l, 

PL,[u:(Y&(~I> &Jl = aG’?sgna,) = 0 
i= -_n ,..., -2,2 ,..., m, 

P,WCV~> c,Jl = /GW = 6, 
i= -_n ,..., -l,l,..., m, 

ah ah _=~ 
ax, ax, 

at x* = 0, 

p,(u?) = p-I(uTI) atx, = 0, 

with initial conditions : 

,I:l_m,Pm = Rm x* > 0 

and 

lim l*_n = 8_,, ,*-0 x.+ < 0. 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

3. SOLUTION 

We first linearize equations (18) by using the lin- 
earization procedure derived by Knight [2], who 
modified a transformation of Storm [20], 

J. Xi = 
s 

a,-‘@;-pi)-‘dx,, 
&“,I, 

i= -n ,..., -l,l,..., m, (25) 

7 = t,. (26) 

In Appendix A, we derive the linear equations : 

0 < sgn (- iD:)x, < sgn (- iD:)S,(7) 

fori= -n+l,..., -l,l,..., m-l 

0 < sgn(-iD:)x, < x fori = -n,m, (27) 

where R;(r) is the value of the flux at the phase bound- 

ary x* = J?&,(,~ : 
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R,(z) = - $ j= -n ,..., -I,1 ,..., m, 
* * I.= ‘;+se L,,,) 

(28) 
and S,(t) denotes the phase boundary x, = y: in 
terms of the transformed coordinates : 

* 
I” S,(z) = 

I 
a;‘(b,-/$‘dx*, 

1: \$,I,‘, 

i= -n+l,..., -l,l,..., m-l. (29) 

We note that the sign of x, is dependent upon whether 
the thermal diffusivity Dj is a decreasing or an increas- 
ing function of temperature (Broadbridge and Banks 

PII). 
In order to proceed further we need explicit func- 

tional forms for R,(z), S,(T), the thermal densities 
p,(u,*(O, t.J), i = - 1, 1 andy: These functional forms, 
in fact follow from the scaling invariance of the gov- 
erning equations and boundary conditions. 

The whole boundary value problem (13), ( 18)-(24) 
is invariant under the scaling group : 

PF = ,4 XT = exp (8)x* t: = exp (2E)t*, 

where E is the real valued Lie group parameter (e.g. 
see Hill [22]). The invariants of the group are functions 
of p, and x,t; “* Therefore, we adopt self-similar 
solutions of the form : 

Pi = h,(l) 

with< = x,t;’ ‘, i= --n ,..., -l,l,..., m. (30) 

From the form of the similarity solution, planes of 
constant temperature are located where x,t;“* = 4 
(constant). This implies that the interfaces between 
phases move as : 

y,*(t,)=h,ti’, i= -n+l,... ?-I,1 ,..., m-1. 

(31) 

where the 6, are constants. As we shall demonstrate, 
the non-linear Stefan problem does have an exact 
solution in which the free boundaries satisfy equation 
(31). Since a well-posed Stefan problem leads to a 
unique position of the free boundaries, equation (31) 
is an inviolable law, rather than just a convenient 
assumption. 

The invariance implies that the thermal densities 
,~,(up(O, t*)), i = - 1. 1 are constant, which implies 
that the temperature T,* at x* = 0 is constant, just as 
in the related linear problem [16]. This property rests 
on the assumption of ideal uniform initial conditions 
and on ideal thermal contact between the two 
materials. If we choose T,* as the lower limit of inte- 
gration in the Kirchhoff integral variables for the 
phases adjoining the boundary between the materials, 
the boundary equations at x* = 0 are simplified. The 
unknown temperature r,* then appears in the defi- 
nition of the value of the Kirchhoff variable at the 
boundaries x* = J:; i = - 1,l. The thermal bound- 

ary conditions at x* = Oandx,=y*;i=-l,lare 
then, respectively : 

p,bxo, t*)l = P,(~,*) = 0 

and 

p,[u;(y;, t.J] = p,(T,*) = 0,. i = -1,l. (32) 

The flux R,(r) takes the explicit form : 

R,(r) _ - if! ,, -12 
ii* . (33) 

’ * Y. =h, .,,,,,,r! z 

where 

i= -n ,..., -l,l,..., m and 6, =0, 

and, as detailed in Appendix B, the phase boundaries 
S;(r) in terms of the new length coordinate may be 
expressed as : 

S,(z) = 2(A,-i,,)r’ *, 

i= -n+l,..., --I,1 ,..., m-l, (34) 

where 

A, = QrYr+sgn(l) + [aJ,* +a,-’ (b, - W'IW, (35) 

and 

1, = QiY, + (2GJ ’ L,g”(,). (36) 

Equations (27) may now take the canonical form : 

0 < sgn (-i&)x! < sgn (iD:)2(A, -k,)r’ * 

for 

i= -n+l,..,, -l,l,..., m-l, 

and 

0 < sgn(-iD:)x, < cc fori = --n,m. (37) 

We now have the parameters 6,, y,, and T$ to be 
determined rather than the arbitrary functions 
y~,~,(u~(O, t.+J); i = - 1, 1, R,(7) and S,(r). The 
boundary conditions remain linear. Equations ( 19)) 
(22), (24) and (32) transform to : 

fori= -n+l,..., -l.l,__,, m-l, (38) 

p, =0 atXt =0 i= --II ,..., -l,l,.._, m, (3% 

p, = 8, at xz = 2(A, -/1,)r”’ 

fori= -n+l...., -l,l,..., m-l, (40) 
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Lb+@, asx,+gn(-iD:)oci, i = --n,m, (41) 

and initial conditions : 

F_F Pm = 6, w ( - ;WX,,, 1 0 

and 

!I;&,, = L sgn(-iD’_,,)X_,, < 0. (43) 

The boundary value problem (37)-(43) is invariant 
under the scaling group : 

,u,* = p, x: = exp (c)x;, z, = exp (28)~. 

The invariants are functions of pL, and ~,r-’ 2. 
Assuming similarity solutions : 

s,(h) = K/O, with 4t = x,(45)-’ ’ +I,, 

i = --n,.. .,-1,1,.. .,m, (44) 

equations (37), (39)-(41) and (43) reduce to : 

sl’(d4 + 24id(4,) = 0, 

sgn (- D&I, < sgn (- iD:)4, < sgn (- iD:)A, 

fori= -n+l,..., -l,l,..., m-l 

and sgn (- iD:)i, < sgn (- iD:)4, < w 

fori = -n,m, (45) 

g,($,) =0 at+, =A,, i= --n ,..., -l,l,..., m, 

(46) 

g,(&) = 1 at+, = 4, 

i= -n+l,..., -l,l...., m-l (47) 

and 

g,($,)+l as4,+sgn(-iD:)r,, i = -km. (48) 

The flux may be expressed as : 

z/A 
. = -- a,‘[h,-~,g,(dh~l- ‘Q,JK(4,)(4T)_ ’ ?. c.x* 

(49) 

Then, comparing (33) and (49), WC deduce : 

0, ‘[h,-t),g,(9,)]~‘o,s;(~,) = 2;‘; atf&! = i,. 

I= -n,..., -I,1 ,..., m, (50) 

and from the continuity of flux between the materials, 
equation (42), we have : 

;‘, = ;‘~_,. (51) 

The Stefan condition boundary equations (38) take 
the form : 

i= --n+l,..., -l,l,..., m-l. (52) 

Equations (45)-(48) yield analytic solutions : 

g,($J = 
erf fjz - erf i,, 

sgn(-iD:)-erfi,,’ 

sgn(-iDj)L, < sgn(-iiDi)4; < cc fori= --n.m 
(53) 

and 
erf4,-erfi, 

C/,(4,) = -~~~~~~~~-~ erf A, - erf 1; ’ 

sgn (- iD:)i, < sgn (- iD:)4, < sgn (- iD:)A,. 

fori= -n+l,..., -l,l,..., m-l. (54) 

Here, erf (z) = 2n: ’ ‘fi exp (- w’) dlq is the error 
function. 

However, as in the classical Stefan problem of a 
two-phase system, the coefficients in the solution are 
determined by solving transcendental equations. The 
flux boundary equations (50) and (52) yield : 

fI,exp(-Lf) 

a,h,n’ ’ [sgn (- iD:) -erfi,] 
= 1’!> i= --n,m, (55) 

t),exp(-lf) 

a,b,z’2 [erf A, -erf %,] = ‘I’ 

i= -n+l,..., -l,l,..., m-l, (56) 

and 

0, exp (- A3 
a,(b,-8,)n”*[erfA,-erf A,] 

= Yr+sgn(r) + LP6,/2 

fori= -n+l,..., -l,l...., m-l. (57) 

Now, 7, and 6, may be eliminated from equations (55)- 
(57). This choice leads to a system of equations which 
have a direct solution procedure. Eliminating 6, from 
(35), (36) and solving for y< gives : 

;‘r = b~sgn~t~(h-,,n~,, - L,n,AA \gt>co 
-~,cc,h,a,-,,,(,,L,*_,,,,,,) -bThli 

bL,“,n@z -Fg”,l, - ~,ww,z,) 

x (1 - a:u:_ sgnd - dhl 
fori= --n ,.... -2,2 . . . . . m, (58) 

and 

I, -_ ,i - z: fori= -1,l. (59) 

Then substituting (58) into (36) and solving for ci, 
yields : 

-R+s,“(o r+sp”~r~ b 1 
a,~‘[b,-H,g,l-‘Q,gi = 2y(+,g,,,,+L,*fi, atd, =A,. fori= -n+l.__., -l.l,..,, m-l. (60) 
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Finally, equations (58)-(60) are substituted into (55)) 
(57) and the resultants algebraically rearranged to 
form the system of equations : 

0 = 0, -a&c”* exp (Lf )[sgn (- iD3 - erfl,] 

x L,“(,(b,-s,no, -eI-sgn(r))(Ar-sgn(O 

-laba_ I , I I sgn~r&Ld -Add/ 

[at.~p”cn(b,~~g”cn-8,-sgn(r) I(1 -afhX5,d-db,l 
fori = --n,m, (61) 

i +r+agn(r) = a,@, - R)(t - af+sgn(,~br+sgn(,~l*)A~/ 

(~l~+.gn,,,b<+,~n,i, ) - ~,]~~f (b, - 0,) 

x (1 -a?+,,,&?, ,d3 -a,‘,,,,ob,a 3end/ 

[a,+,,,,,,b,+,,,(,,a,(b, - fW’2 exp A?(erfA - erfA)l 
fori= -n+l,..., -l,l,.._, m-l, (62) 

erf A, = erfl, + 8,[af_,,,,,,(b,-,,,,,, - 0,-+& 

x (1 -a,‘b,L:-,,,,c,,)-afb,l/ 
{a,b,d ” exp IL? L,,. (A,- sgnc,, - ~ia,b,a,~,gn,nL~*-,9,(,,) 

x (b,+rgnc,3 - Lgnd - bG4) 
fori= -n+l,..., -2,2 ,..., m-l and (63) 

erfA, = erfI,+0,/(b,rr/2~,expIf)fori = - 1,l. 

(64) 

From (51) and (59) : 

(65) 

Equations (61)-(65) form a closed system of 2m+ 
2n- 1 equations for the determination of the 
2m+2n-1 constants Ak; k = --n+l,. ..,-l,l,..., 
m-l, 1,; I= -n ,..., -l,l,..., m and T,*, the tem- 
perature at x* = 0. T,* defines the constants 0,, a,, b, ; 
i = - 1,l from equations (32). 

The equations are in a form amenable to a simple 
bisection numerical scheme with only two variables to 
iterate. T,* is chosen as one of the variables to iterate 
as the constants or, a,, b,; I = - 1,1 are defined when 
T,* is specified. This choice also enables the diffusivity 
parameters a,, b,; I = - 1, 1 of phases I = - 1,1 to be 
adjusted to closer match the diffusivity of these phases. 
In practice, as the temperature Td becomes more accu- 
rately determined, diffusivity data may be rejected if 
it falls outside of the temperatures encountered in 
these phases. The other variable to iterate is either 1, 
or i._, as this specification determines the remaining 
constantsA,;i= -n+l,..., -l,l,..., m-l andi,; 
k= --n,...,- 1,2 ,..., m or I,; k= -n ,..., -2, 
1,. , m. There is a coupled recurrence relation 
between these constants by equations (62)-(64). 

The solution is achieved as follows. Consider the 
case of 1, being chosen as the other variable to iterate. 
For each iteration of T$ and each iteration of 1,,, the 
constantsA,;i= l,..., m-l andI,;k=2 ,..., mare 

determined from equations (62)-(64). These values 
are checked for consistency using equation (61). When 
a consistent value of I, is obtained, then, from equa- 
tions (65) and (62))(64) the remaining constants A,; 
j= -1 ,..., -n+l and 1,; I= -l,..., -n are deter- 
mined. Finally, the overall consistency is checked 
using equation (61). 

The case of I_, as the other variable to iterate is 
similar to the above. For numerical efficiency JL, is 
chosen if m < n and 1_ , is chosen if n < m. 

To complete the parametric solution, from equa- 
tions (44) : 

Pz = e,c7r(hh i= -n ,.... -l,l,..., m, (66) 

where the gi are defined by equations (53)-(54). The 
p, defined by equation (14) are inverted when the 
thermal conductivities are given. The Storm trans- 
formations equations (25) and (26) are inverted to 
obtain : 

x* = h{b,(4, -2 + @,[h erf4 -4, erf4, 

+7[m”2 exp(-Lf)-K”Zexp(-$,2)]/ 

[sgn (- iD:) -erf I,} tZ:* +J$-~~~~~,, 

sgn(-iD:)l,, < sgn(-iDi)+, < cofori= -n,m, 

(67) 

x* = 2a,{b,(c$, -1;) +0,[4! erfl, -+! erf+, 

+n-“2 exp(-1,2)-n-“‘exp(--#)I/ 

[erfA,-erfIj]}t:‘2 +.Y,*_,,,,,, 

sgn (- iDi)& < sgn (- iD:)& < sgn (- iD:)A, 

fori= -n+l,..., -l,l,..., m-l, (68) 

where, from (31) and (60) : 

y* = 2a I / r+sgndr+ngn~l~ {A+sgncrj -ar+rgncr) 

x [(A, -ar+rgn,r,br+sgn~i~alLI*jlrtagno) 

x a,(b, - Q,> - a,, sgn(r,br+aEn(r)~“r+ag”~~~l/ 

bf @, - ~,I(1 ~ af+,p,c,~b,+,,,,,,L,*) 
2 -ar+sgn(r~br+spn(r)l}r~2 

fori= -n+l,.__, -l,l,..., m-l (69) 

are the positions of the phase boundaries and j$ = 0. 

4. TWO EXAMPLES 

For illustration purposes, the freezing of pure iron 
on a pure copper base and the converse problem of 
the freezing of pure copper on a pure iron base are 
considered. The problem of iron solidifying on copper 
was chosen as iron changes through various phases 
during cooling and the thermal properties vary highly 
near the magnetic transition. We chose copper as the 
base material so a large temperature range is obtained 
in the solidifying iron. Also, copper is often used as the 
primary heat extraction medium during continuous 
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Table 1, Phase transition and heats of transformation for pure iron and pure copper 

Temperature Volumetric latent heat 
Phase transition CR) (J cm-‘) 

Liquid iron to 6 iron 
6 iron to y iron 
y iron to non-magnetic c( iron 
Non-magnetic c( iron to magnetic a iron 
Liquid copper to solid copper 

1810 2040 
1673 83 
1183 124 
1043 235 
1356 1630 

casting. As we shall see from the solution, the steel- 
copper interface remains below the melting point of 
copper, even when there is no intermediate layer of 
mould-flux. We use an initial temperature of the liquid 
iron as 1830 K, which is typical for a casting process, 
and the initial temperature of the copper base is 300 
K. 

The problem of copper solidifying on iron was 
chosen to demonstrate a heat conduction problem in 
which the base material undergoes phase changes, 
with absorption of latent heat during its heating. We 
use the same initial conditions for the liquid and solid 
as in the previous problem. 

The phase transition temperatures and the heats of 
transformation of iron and of copper are shown in 
Table 1. The phase transition temperatures are taken 
from ref. [23] and the volumetric latent heats are cal- 
culated using molar latent heats from ref. [24], and 
densities (interpolated or extrapolated as required) 
from refs. [25, 261. The thermal diffusivity of the 
phases of iron and of copper are shown in Fig. 1. The 
highly varying diffusivity within the magnetic t( and 
non-magnetic tl phases of iron are not of a form which 
the diffusivity relation (17) can accommodate directly. 
However, a very close approximation to these forms 
of diffusivity may be obtained by fitting piecewise 
segments of the relation (17). This is achieved by intro- 
ducing, where appropriate, additional fictitious phase 
changes having zero latent heat of transformation. 
For example, the, diffusivity of the magnetic a phase 
is approximated piecewise using five segments of 
relation (17) by introducing four additional fictitious 
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FIG. 1. Recommended thermal diffusivity of iron and copper 
versus temperature [27]. 

phase changes. A close fit, within the 4% error of 
measurement, is obtained by choosing these phase 
changes at temperatures of 500, 700, 900 and 1000 K 
(see Fig. 1). A similar procedure is used for the non- 
magnetic a and y phases where the diffusivity of each 
of these phases is approximated piecewise using two 
segments of relation (17). The diffusivity of the solid 
copper and the liquid copper are approximated piece- 
wise using five and two segments of relation (17), 
respectively (see Fig. 1). We have shown segments of 
(17) fitted piecewise over the temperature range 30& 
1900 K: however, during calculation we reject any 
segments that fall outside of the actual temperatures 
encountered in the materials. 

The thermal conductivity of the phases of iron and 
of copper are shown in Fig. 2. For calculation 
purposes, the integration of the thermal conductivity 
is achieved numerically using the trapezoidal rule and 
linear interpolation where required. 

The temperature distribution within each phase vs 
length divided by square root of time, for the sol- 
idification of iron on copper, is shown in Fig. 3. The 
temperature at the fixed magnetic-acopper boundary 
remains at 785 K, which is well below the melting 
point of copper. The coefficients from equations (31) 
describing the position of the phase fronts are, non- 
magnetic a to magnetic a, 0.96 mm s-“~; 1~ to non- 
magnetic a, 1.41 mm SC’/*; 6 to y, 3.39 mm SC”* and 
liquid to 6, 4.25 mm SC”*. 

The temperature distribution vs length divided by 
square root of time, for the solidification of copper on 
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FIG. 2. Recommended thermal conductivity of iron and cop- 
per versus temperature [23]. 
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iron, is shown in Fig. 4. The temperature at the cop- 
per-iron boundary is 1336 K. The coefficients from 
equations (31) describing the position of the phase 
fronts are, non-magnetic c( to magnetic a, - 1.10 mm 
s ’ * ; y to non-magnetic a, -0.56 mm s-~ ‘I* ; and liquid 
to solid copper, 0.83 mm SC”*. 

5. CONCLUSION 

Equations (53))(54) and (61))(69) are an exact 
parametric solution describing the temperature dis- 
tribution and position of any phase boundaries as a 
semi-infinite material solidifies on a semi-infinite base 
material. The solution method may incorporate any 
material with temperature dependent thermal proper- 
ties. Hence, compared to a linear model, our non- 
linear model offers a faithful representation of the 
thermal properties of real materials. The solution may 
be used to test the ability of numerical schemes to 
cope with non-linear thermal properties before such 
schemes are applied to three-dimensional problems 
involving complicated geometries. 

The solution may be reformulated to include chan- 
ges in density between phases by the same procedure 
as in the linear formulation [28] and, by a suitable 
change in terminology, the solution technique may be 
applied to concentration diffusion problems of this 

type. 
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From equations (29) and (31) : 

APPENDIX A 

We establish the linear equations (27) from the non-linear 
equations (18), via the Storm transformation (25))(26). 
From (18) : 

2 = ai(b,-p,)‘?. (Al) 
* : 

First, we transform the left hand side of (Al) : 

from (A 1) 

6,l  1  

S,(r) = i ” a,-‘(b,-g,)-‘dx,. (BI) 

dS, 
-=i 

n,r: 2 

dt, L8,,,,,r: 2 
a.a,-‘(b,-p,)-‘$d.r, 

* 

= a, 212 

- a,- I b,- ’ 6 ,-,gn,o/* 2’2 
from (20) (21). (32) and (Al) 

+a;~‘(b,-8,) ‘fi,t,’ 2/2 

-a,y’bm’6 / t-1 ‘I2 ‘+*g”,‘, * / 

= b,(C4 + 27,+,,,,,, - 27,) + a; ’ (b, - 0,) ’ 6, 

-a;‘b, ‘d,_,,,,,,]t,“/2by(l9)and(33). (B2) 

Integrating (B2) and noting that S,+O as I, + 0 then. 

S,(T) = 2(A, pj.,)T’ z . (B3) 

where 
A, = cr,:‘,+,,,,,,,+[a,L*+cr, ‘(h,-0,) ‘V/2 034) 

and 

i, = n,y,+(2a,b,)~ ‘6,_,, n,,,. 

which completes the derivation. 

(B5) 


